Дигибридное скрещивание закон независимого наследования признаков и его цитологические основы
Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Дигибридное скрещивание закон независимого наследования признаков и его цитологические основы». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.
Анализируя полученные результаты, сначала рассмотрим количество возможных фенотипов в поколении F2 , которое дало данное дигибридное скрещивание. Мендель сомневался, увидит ли он только два родительских фенотипа: с круглыми жёлтыми и морщинистыми зелёными семенами, или дополнительно появиться круглые зелёные, морщинистые желтые семена.
Если бы признаки наследовались сцеплено, то образовалось бы только два типа гамет: RY и ry. Но в случае с горохом и признаками, выбранными Менделем наследование происходило независимо, поэтому у родителей второго поколения образовалось 4 типа гамет: RY, ry, Ry и rY. Так проявился уже знакомый нам закон расщепления.
Чтобы рассмотреть все варианты возможного потомства, удобно построить решетку Пеннета. Это квадрат 4х4 с 16 возможными результатами. Из неё мы видим, что есть 9 растений с круглыми желтыми, 3 с морщинистыми желтыми, 3 с круглыми зелеными и 1 с морщинистыми зелеными семенами. Это демонстрирует фенотипическое соотношение 9:3:3:1, характерное для признаков, которые ведут себя независимо.
R: | ♀ RrYy | ♂ RrYy |
G: | RY, ry, Ry, rY | RY, ry, Ry, rY |
Решётка Пеннета
♂
♀ |
RY | ry | Ry | rY |
RY | RRYY | RrYy | RRYy | RrYY |
ry | RrYy | rryy | Rryy | rrYy |
Ry | RRYy | Rryy | RRyy | RrYy |
rY | RrYY | rrYy | RrYy | rrYY |
Что же на самом деле наблюдал Мендель? Из 556 семян, полученных при дигибридном скрещивании, он увидел следующие фенотипические результаты:
- 315 круглых жёлтых (обозначаются R_Y_, где подчёркивание указывает на наличие любого аллеля);
- 108 круглых зелёных (R_ yy);
- 101 морщинистых жёлтых (rr Y__);
- 32 морщинистых зелёных (rr yy).
Для объяснения результатов скрещивания, проведенного Г. Менделем, У. Бэтсон (1902) предложил гипотезу «чистоты гамет». Ее можно свести к следующим двум основным положениям:
- у гибридного организма гены не гибридизируются (не смешиваются), а находятся в чистом аллельном состоянии;
- из аллельной пары в гамету попадает только один ген вследствие расхождения гомологичных хромосом или хроматид при мейозе.
Дигибридное скрещивание. Закон независимого наследования. Урок 3
Число пар генов и соответствующих им признаков, по которым организмы отличаются друг от друга, часто бывает больше двух. Анализ данных по большому количеству аллельных пар называют полигибридным скрещиванием.
При таком анализе приходится изучать большое количество генотипов и фенотипов. Но закономерности, которым подчиняется их наследование часто бывает таким же как при моно- и дигибридном скрещивании.
Законы Менделя носят статистический характер (выполняются на большом количестве особей) и являются универсальными, т. е. они присущи всем живым организмам. Для проявления третьего закона Менделя необходимо соблюдение ряда условий:
- гены разных аллельных пар (неаллельные) должны находиться в разных парах (негомологичных) хромосом;
- между генами не должно быть сцепления и взаимодействия, кроме полного доминирования;
- должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания организмов с разными генотипами (не должно быть летальных генов).
В основе независимого наследования генов разных аллельных пар лежит генный уровень организации наследственного материала, заключающийся в том, что гены относительно независимы друг от друга.
Закон выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:
- форма семени (круглая/некруглая);
- окраска семени (желтая/зеленая)
- кожура семени (гладкая/морщинистая) и т.д.
При скрещивании растений с гладкими и морщинистыми семенами все гибриды первого поколения оказались гладкими. Этот признак был назван доминантным.
Данный метод генетики основан на скрещивании особей одного вида с альтернативными (контрастными) признаками (АП) и отслеживании их дальнейшего развития у следующих поколений потомства. При этом должны соблюдаться условия:
- изучаются только исследуемые признаки, остальные не учитываются;
- целенаправленно подбираются родители с нужными приметами;
- потомство каждой особи выращивается отдельно от других;
- ведется количественный учет гибридов, получивших изучаемые признаки;
- в ряду поколений оценивается потомство, полученное от каждого родителя.
При изучении моно- и дигибридного скрещивания в биологии используются следующие общепринятые символы:
Законы Г. Менделя и их цитологические основы
- Изобразительное искусство
- Музыка
- Испанский язык
- Английский язык
- Немецкий язык
- Французский язык
- Основы безопасности жизнедеятельности
- Физическая культура
- Русский язык
- Литература
- Литературное чтение
- История
- География
- Обществознание
- Экология
- Россия в мире
- Право
- Окружающий мир
- Экономика
- Технология (мальчики)
- Технология
- Технология (девочки)
- А
- Б
- В
- Г
- Д
- Е
- Ё
- Ж
- З
- И
- Й
- К
- Л
- М
- Н
- О
- П
- Р
- С
- Т
- У
- Ф
- Х
- Ц
- Ч
- Ш
- Щ
- Э
- Ю
- Я
Если гены А и В находятся в
- разных хромосомах;
- разных парах хромосом;
- негомологичных хромосомах;
- разных парах негомологичных хромосом (все это одно и то же);
то они наследуются независимо, согласно III закону Менделя (закону независимого наследования): «Расщепление по каждой паре признаков происходит независимо от других пар признаков».
Цитологической основой независимого наследования является независимое расхождение хромосом в анафазе I мейоза.
Расщепления, характерные для независимого наследования при дигибридном скрещивании
1) Расщепления нет (все дети одинаковые) – скрещивали двух гомозигот ААBB х ааbb (или AAbb x aaBB).
2) Расщепление 9:3:3:1 – скрещивали двух дигетерозигот АаBb х АаBb (третий закон Менделя).
3) Расщепление 1:1:1:1 – скрещивали дигетерозиготу и рецессивную гомозиготу АаBb х ааbb (анализирующее скрещивание).
Если гены А и В расположены в
- одной хромосоме;
- одной паре хромосом;
- одной паре гомологичных хромосом;
то они не смогут разойтись независимо, происходит сцепленное наследование.
Хромосомная теория наследственности (Т. Морган):
1) Гены расположены в хромосоме линейно.
2) Гены, расположенные в одной хромосоме, наследуются вместе (сцепленно).
3) Сцепление нарушается при кроссинговере. Вероятность кроссинговера зависит от расстояния между генами.
4) Все гены, находящиеся в одной хромосоме, образуют группу сцепления. Количество групп сцепления равняется количеству хромосом в гаплоидном наборе.
Выберите один, наиболее правильный вариант. Если гены, ответственные за окраску и форму семян гороха, расположены в разных хромосомах, то во втором поколении проявляется закон
1) независимого наследования
2) сцепленного наследования
3) расщепления признаков
4) доминирования
Ответ
1
Выберите один, наиболее правильный вариант. Количество групп сцепления генов у организмов зависит от числа
1) пар гомологичных хромосом
2) аллельных генов
3) доминантных генов
4) молекул ДНК в ядре клетки
Ответ
1
Выберите один, наиболее правильный вариант. Какие виды гамет образуются у организма с генотипом АаВb при сцеплении доминантных генов
1) АВ, аb
2) Аb, аВ
3) АВ, Аb, аВ, аb
4) Аа, Вb
Ответ
1
Выберите один, наиболее правильный вариант. Схема AABB х aabb иллюстрирует скрещивание
1) моногибридное
2) полигибридное
3) анализирующее дигибридное
4) анализирующее моногибридное
Ответ
3
Выберите один, наиболее правильный вариант. При скрещивании гетерозиготных растений томата с красными и круглыми плодами с рецессивными по обоим признакам особями (красные А и круглые В — доминантные признаки) появится потомство с генотипами АаВb, ааВb, Ааbb, ааbb в соотношении
1) 3:1
2) 9:3:3:1
3) 1:1:1:1
4) 1:2:1
Ответ
3
Выберите один, наиболее правильный вариант. При скрещивании дрозофил с серым телом и нормальными крыльями и дрозофил с темным телом и зачаточными крыльями проявляется закон сцепленного наследования, так как отвечающие за эти признаки гены расположены в
1) ДНК митохондрий
2) разных парах хромосом
3) одной паре хромосом
4) половых хромосомах
Ответ
3
Выберите один, наиболее правильный вариант. При дигибридном скрещивании (несцепленное наследование) особи с доминантными и особи с рецессивными признаками в F1 происходит расщепление по фенотипу в соотношении
1) 9:3:3:1
2) 1:2:1
3) 3:1
4) 1:1:1:1
Ответ
4
Выберите один, наиболее правильный вариант. Генотип одного из родителей будет АaBb, если при анализирующем дигибридном скрещивании и независимом наследовании признаков наблюдается расщепление по фенотипу в потомстве в соотношении
1) 1:1
2) 3:1
3) 1:2:1
4) 1:1:1:1
Ответ
4
Выберите один, наиболее правильный вариант. Всегда наследуются вместе гены
1) рецессивные
2) аллельные
3) доминантные
4) тесно сцепленные
Ответ
4
Выберите один, наиболее правильный вариант. Сколько типов гамет формируется у родительского организма с генотипом АаВb в случае сцепленного наследования при отсутствии кроссинговера?
1) 1
2) 2
3) 3
4) 4
Ответ
2
Выберите один, наиболее правильный вариант. При скрещивании гомозиготных растений томатов с красными (А) круглыми (В) плодами и растений с желтыми (а) грушевидными (b) плодами в F2 происходит расщепление по фенотипу в соотношении (гены окраски и формы плодов расположены в разных парах хромосом)
1) 1:1
2) 3:1
3) 1:2:1
4) 9:3:3:1
Ответ
4
Выберите один, наиболее правильный вариант. При дигибридном скрещивании и независимом наследовании признаков у родителей с генотипами ААBb и aabb в потомстве наблюдается расщепление в соотношении
1) 9:3:3:1
2) 1:1:1:1
3) 3:1
4) 1:1
Ответ
4
Выберите один, наиболее правильный вариант. При скрещивании особей с генотипами АаВb с АаВb (гены не сцеплены) доля гетерозигот по обеим аллелям в потомстве составит
1) 0,75
2) 0,5
3) 0,25
4) 0
Ответ
Дигибридное скрещивание — схема, правила и задачи
Скрещивание, в котором родительские особи анализируются по одной паре альтернативных признаков, называется моногибридным, по двум – дигибридным, по трем и больше – полигибридным.
Знак скрещивания – х, родительские формы обозначают латинской буквой Р (от лат. parentes – родители), гаметы – G, потомков – F (от лат. phylii – сыны), номер поколения потомков – индекс снизу – F1 , F2, F3 …, материнскую особь – знаком ♀, мужскую – ♂. Генотип материнской особи записывают, как правило, первым, отцовской – вторым.
Г. Мендель для исследований выбирал два сорта гороха, которые четко отличались по какому-нибудь признаку: желтая или зеленая окраска семян, гладкая или морщинистая поверхность семени, расположение цветков вдоль всего стебля или на его концах и т. д. Выращивал такие растения ряд поколений, пока не убеждался, что они размножаются в чистоте – чистые линии. Мендель использовал метод гибридизации. Он скрещивал такие растения между собой и получал поколение, имеющее лишь один из этих признаков. Второй не развивался. То есть ученый получил единообразие в первом поколении растений. Признак, сохраняющийся и подавляющий другой, называют доминантным, подавляемый – рецессивным.
Явление единообразия гибридов первого поколения и проявление в нем только одного из альтернативных признаков – доминантного, имеет название закона доминирования или первого закона Менделя.
Формулировка: при скрещивании гомозиготных особей, которые отличаются по одной паре альтернативных признаков, все гибриды первого поколения единообразны по фенотипу и генотипу.
При самоопылении гибридов первого поколения во втором гибридном поколении Мендель наблюдал растения с признаками родителей (доминантным и рецессивным). Соотношение их составляло: 3 – растения с доминантным признаком, 1 – с рецессивным. Например, во втором поколении из 926 растений 705 имели красные цветки, а 224 – белые (соотношение 3,15:1), из 8023 семян гороха 6022 были желтые, а 2001 – зеленые (3,01:1) и т. д.
Явление расщепления признаков при скрещивании гибридов первого поколения имеет название закона расщепления или второго закона Менделя.
Формулировка: при скрещивании двух гетерозиготных особей (гибридов первого поколения) у потомков наблюдается расщепление 3:1 по фенотипу и 1:2:1 по генотипу.
Соотношение особей с доминантным и рецессивным признаками тем точнее приближается к 3:1, чем больше численность изучаемого потомства, Менделевские законы доминирования и расщепления являются универсальными. Им подчиняются все живые организмы, независимо от простоты или сложности их организации.
Простейшим из разновидностей полигибридного скрещивания является дигибридное.
Г. Мендель скрестил растения гороха посевного с желтым гладким семенем (доминантные признаки) и зеленым морщинистым (рецессивные признаки). Растения разводились в «чистоте», то есть являлись гомозиготами по обоим признакам.
В первом поколении он получил растения, которые имели желтые гладкие семена – единообразие первого поколения по доминантным признакам.
При скрещивании гибридов первого поколения (самоопылении) наблюдалось расщепление: 315 семян желтых гладких, 108 зеленых гладких, 101 желтое морщинистое, 32 зеленых морщинистых.
Во втором поколении образовалось четыре фенотипа в соотношении 9:3:3:1. Произошло независимое расщепление признаков: соотношение желтых и зеленых семян 3:1 соответственно, гладких и морщинистых – 3:1. Эта закономерность получила название независимого комбинирования признаков или третьего закона Менделя.
Менделем законы были открыты в то время, когда еще были неизвестны процессы митоза и мейоза, существование хромосом и генов. В наше время возможно цитологическое подтверждение этих законов. Менделевский закон независимого распределения признаков можно объяснить изученными особенностями передвижения хромосом во время мейоза.
Известно, что соматические клетки, как правило, имеют двойной набор хромосом, то есть каждая гомологичная хромосома имеет себе пару. В хромосомах находятся гены. Доминантный признак обозначают большой латинской буквой, рецессивный – соответствующей маленькой. Гомозиготный по доминантному гену организм имеет две гомологичные хромосомы с геном А (генотип – АА), гомозиготный рецессивный – две гомологичные хромосомы с геном а (генотип – аа). При скрещивании образуется гетерозиготный организм Аа.
Это можно записать в виде схемы. Результат получения единообразного первого поколения можно записать так. Например, желтая окраска семени – А, зеленая – а.
P: ♀ AA × ♂ aa
G: A a
F1: Aa
желтая
В каждую половую клетку попадает лишь один аллельный ген из каждой пары. Гомозиготный организм образует один сорт гамет, гетерозиготный – несколько (2n, где n – количество признаков).
При самоопылении или перекрестном опылении двух гетерозиготных растений возможны четыре соединения генов в зиготах (второй закон Менделя):
P: ♀ Aa × ♂ Aa
G: Aa Aa
F2: AA, Aa, Aa, aa
желтое зеленые
Для определения классов потомков удобно пользоваться решеткой Р. Пеннета. Для этого по горизонтали записывают гаметы одной особи (отцовской), по вертикали – второй (материнской).
♀\♂ | A | a |
A | AA | Aa |
a | Aa | aa |
3 растения (1АА и 2Аа) будут иметь доминантный признак, 1 – рецессивный. Расщепление 1АА : 2Аа : аа – это расщепление по генотипу, а расщепление – 3 желтых : 1 зеленое – по фенотипу. Таким является цитологический механизм расщепления.
Аналогично можно продемонстрировать цитологические основы и статистический характер закона независимого комбинирования состояний признаков.
А – желтая окраска семян гороха посевного, а – зеленая,
В – гладкая форма семян, b– морщинистая.
P: ♀ AABB × ♂ aabb
G: AB ab
F1: Aa Bb
Результатом скрещивания являются растения, которые имеют желтое гладкое семя. Гибридное растение с генотипом АавВb может образовывать четыре типа гамет: АВ, Ab, аВ, ab (22 = 4).
P: ♀ AaBb × ♂ AaBb
G: AB, aB, AB, aB,
Ab,ab Ab,ab
F2:
♀\♂ | AB | Ab | aB | ab |
AB |
AABB желтые гладкие |
AABb желтые гладкие |
AaBB желтые гладкие |
AaBb желтые гладкие |
Ab |
AABb желтые гладкие |
AAbb желтые морщинистые |
AaBb желтые гладкие |
Aabb желтые морщинистые |
aB |
AaBB желтые гладкие |
AaBb желтые гладкие |
aaBB зеленые гладкие |
aaBb зеленые гладкие |
ab |
AaBb желтые гладкие |
Aabb желтые морщинистые |
aaBb зеленые гладкие |
Aabb зеленые морщинистые |
В данном случае при равновероятной встречаемости всех типов гамет во втором поколении возникает 16 соединений, которые составляют девять разных генотипов и четыре фенотипических в соотношении 9 желтых гладких : 3 желтых морщинистых : 3 зеленых гладких : 1 зеленого морщинистого.
В генетике принято доминирующий признак обозначать большой буквой латинского алфавита, а рецессивную – маленькой. Итак, вернемся к рассмотрению генетических и цитологических основ первого закона Менделя.
Для своих опытов ученый выбрал чистые линии растений с различной окраской семян. Потомство чистых линий – это гомозиготные организмы. Значит мы можем обозначить набор необходимых нам признаков в соматических клетках растения как «АА» и «аа». В ходе формирования половых клеток, каждое растение образует гаметы, несущие признаки, кторые мы обозначили как «А» или «а». При оплодотворении (слиянии гамет) образуется зигота с сочетанием аллелей «Аа». Это означает, что все гибриды первого поколения – гетерозиготы. Доминантная аллель проявляется в фенотипе, а рецессивная – нет. Поэтому все гибриды первого поколения будут иметь одинаковую окраску семян.
Дигибридным скрещиванием именуют скрещивание организмов, которые различаются по двум признакам. В случае скрещивания форм, отличающихся по большему количеству признаков, употребляют термин – полигибридное скрещивание.
Схематично дигибридное скрещивание выглядит так:
Г. Мендель скрещивал между собой две чистые линии гороха, которые различались по двум признакам:
- форме (морщинистые и гладкие);
- цвету (зеленые и желтые).
Данное скрещивание подразумевает определение признаков разными парами генов: одна отвечает за форму, а другая — за окраску. Гладкая форма семян (В) преобладает над морщинистой (b), а желтые горошины (А) доминируют над зелеными (а).
Закон единообразия гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания «чистых линий», различающихся по одному признаку, будет проявлять признак одного из родителя.
Закон расщепления, или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения (гетерозиготных особей) между собой в потомстве происходит расщепление признаков по фенотипу 3:1 (75% особей с доминантным и 25% с рецессивным признаком) и генотипу 1:2:1.
Закон независимого комбинирования (наследования) признаков, или третий закон Менделя, утверждает, что при дигибридном скрещивании во втором поколении появляются организмы с новыми сочетаниями признаков, отличных от родительских, т.е. выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два — новые).
Первый закон Менделя.
Прежде чем проводить опыты, Г. Мендель получил чистые линии растений гороха с альтернативными признаками: гомозиготные доминантные (АА, с желтыми семенами) и гомозиготные рецессивные (аа, с зелеными семенами) особи, которые в дальнейшем скрещивались друг с другом.
При анализе результатов скрещивания оказалось, что все потомки в первом поколении одинаковы по фенотипу (желтые) и генотипу (гетерозиготны) — закон единообразия гибридов первого поколения( первый закон). Он формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу.
Условия выполнения первого закона Менделя.
Для проявления законов Менделя необходимо соблюдение следующих условий;
— доминирование должно быть полным;
— должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания потомков с разными генотипами (не должно быть летальных генов).
Гипотеза чистоты гамет.
Для объяснения установленных Менделем закономерностей наследования У. Бэтсоном была предложена гипотеза чистоты гамет. Кратко ее можно свести к следующим положениям: 1) у гибридного организма гены не гибридизируются (не смешиваются), а остаются в чистом аллельном состоянии; 2) в процессе мейоза в гамету попадает только один ген из аллельной пары.
Промежуточный характер наследования.
Доминантный ген не всегда полностью подавляет проявление рецессивного гена. В этом случае гибриды первого поколения не воспроизводят признаки родителей — имеет место промежуточный характер наследования. Во втором поколении доминантные гомо- и гетерозиготы будут отличаться фенотипически и расщепление по фенотипу и генотипу будет одинаковым (1:2:1).
Например, при скрещивании гомозиготных растений ночной красавицы с красными (АА) и белыми (аа) цветками первое поколение получается с розовыми цветками (промежуточное наследование). Во втором поколении расщепление по фенотипу и по генотипу, будет: 1 часть растений с красными цветками (доминантные гомозиготы), две — с розовыми (гетерозиготы) и одна — с белыми (рецессивные гомозиготы).
[2]
Р АА х аа Р Аа х Аа
Крас. Бел. Роз. Роз.
G А а G А а А а
Роз. Кр. Роз. Роз. Бел.
Второй закон Менделя.
При скрещивании гибридов первого поколения между собой (т.е. гетерозиготных особей) получается следующий результат:
Каждая из гетерозигот образует по два типа гамет, т.е. возможно получение четырех их сочетаний: 1АА, 2Аа, 1аа, вероятность образования которых равная. По фенотипу особи АА и Аа неотличимы (желтые), поэтому наблюдается расщепление в отношении 3:1 (три части потомков с желтыми семенами и одна часть с — зелеными). По генотипу соотношение будет: 1АА (одна часть растений — гомозиготы по доминантному признаку): 2Аа (две части растений — гетерозиготы) : 1 аа (одна часть растений — гомозиготы по рецессивному признаку).
Второй закон Менделя — закон расщепления — формулируется следующим образом: при скрещивании гетерозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.
Условия выполнения второго закона Менделя.
Для проявления законов Менделя необходимо соблюдение следующих условий;
— доминирование должно быть полным;
— должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания потомков с разными генотипами (не должно быть летальных генов);
Гипотеза чистоты гамет.
Для объяснения установленных Менделем закономерностей наследования У. Бэтсоном была предложена гипотеза чистоты гамет. Кратко ее можно свести к следующим положениям: 1) у гибридного организма гены не гибридизируются (не смешиваются), а остаются в чистом аллельном состоянии; 2) в процессе мейоза в гамету попадает только один ген из аллельной пары.
Цитологические основы законов Менделя.
Цитологические основы законов Менделя составляют закономерности расхождения гомологичных хромосом и хроматид и образования гаплоидных половых клеток в процессе мейоза и случайное сочетание гамет при оплодотворении.
Анализирующее скрещивание.
Для установления генотипа особи с доминантным признаком при полном доминировании применяют анализирующее скрещивание. Для этого данный организм скрещивают с рецессивным гомозиготным по данной аллели. Возможны два варианта результатов скрещивания:
1) Р АА х аа 2) Р Аа х аа
Если в результате скрещивания получается единообразие гибридов первого поколения, то анализируемая особь является гомозиготной, а если в F1 произойдет расщепление признаков 1:1, то — гетерозиготной.
Третий закон Менделя.
Если у родительских форм учитывают две пары альтернативных признаков, скрещивание называется дигибридным.
Изучив наследование одной пары аллелей, Мендель проследил наследование двух признаков одновременно. С этой целью он использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: семена желтые гладкие (А, В — доминантные признаки) и зеленые морщинистые (a, b — рецессивные признаки).
§ 43. Дигибридное скрещивание. Третий закон Менделя
1.Признаки в потомстве гибридов не исчезают, а перекомб-ся и перед-ся след.поколениям; 2.В основе такого наследования – сочетания двух факторов (равновероятн.обр-ие гамет А и а, равновероятн.их встреча). 3.Гипотеза «чистоты гамет» (гамета каждого из родителей несет по одному наследств.факторов).
ЗАКОН ЧИСТОТЫ ГАМЕТ. СУТЬ И ДОКАЗАТЕЛЬСТВА. «Гаметы каждого из родителей» несут только по одному из наследуемых факторов». Мендель не связывал наследств.факторы с конкретн.матер.структурами, цитологическое обоснование появл-ся позже: Во время мейоза у гибрида F1(Аа) разн.пары хромосом расх-ся в дочерн.клетки независимо =>при случ.оплодотворении – 3 типа зигот (АА, Аа и аа). Др.док-во – тетрадный анализ (у мхов гетерозиг. Аа клетка дает тетраду гаплоидных спор. У половины развившихся из спор организмов генотип – А, у половины – а).
[3]
Цитологические основы: 1.Независимое расхождение хромосом в гаметы у представителей F1 =>по одному типу аллелей в каждой гамете; 2. Равновероятная встреча гамет, несущих доминантный или рецессивный аллель.
Рассмотрим дигибридное скрещивание двух особей крупного рогатого скота.
Родители различаются по признакам:
- рогатости и комолости (безрогости);
- чёрной и красной масти.
Доминантная гомозигота ААВВ несёт гены:
- чёрной масти (А);
- комолости (В).
Рецессивная гомозигота аавв имеет гены:
При скрещивании особей, различающихся по нескольким признакам, увеличивается количество типов гамет и фенотипических классов. Их можно рассчитать по формуле 2ᶰ, где N – число пар генов в гетерозиготном состоянии:
- у особей Аа – 2 типа гамет;
- у АаВв – 4 типа;
- у АаВвСс – 8 типов.
Количество фенотипов во втором поколении соответствует числу гамет.
В начале 20 века генетики столкнулись с наследованием, не соответствующим законам Менделя. Не было свободного наследования пурпурной окраски лепестков и морщинистой поверхности пыльцы у душистого горошка.
Впоследствии оказалось, что гены, ответственные за эти признаки, расположены в одной паре хромосом и потому наследуются вместе (сцепленно).
При дигибридном скрещивании родители различаются по двум парам признаков. Третий закон Менделя гласит, что признаки в таком случае наследуются независимо, если определяющие их гены находятся в разных парах хромосом. Соотношение фенотипов и генотипов при дигибридном гетерозиготном скрещивании 9:3:3:1. Если гены А и В расположены в: одной хромосоме или одной паре хромосом, то они наследуются сцепленно.
26. Закономерности наследования. Дигибридное скрещивание
- Фенотипическая изменчивость / Глава 15 Параграф 42
- Взаимодействие генов / Глава 14 Параграф 40
- Законы Менделя / Глава 14 Параграф 37
- Работы Г. Менделя / Глава 14 Параграф 36
- Биология — наука о жизни, о живых организмах / Ведение
Данный сайт я создавал не для заработка. Я на нем не размещаю никакой рекламы и делаю это не из-за этических соображений, а просто потому что биология пока тема не особо доходная. К тому же у меня есть другие проекты на которых я хорошо зарабатываю.
Наверное у вас возник вопрос, а зачем вообще мне все это нужно?
Я еще не так давно учился на биофаке и конечно же возлагал надежды на то, что после окончания буду работать по специальности и заниматься научно исследовательской работой. Однако в аспирантуру не поступил и работу биологом по специальности, которая нормально оплачивается не нашел. После провала вступительных экзаменов в аспирантуру я пошел получать второе высшее образование и теперь занимаюсь программированием.
На данный момент биология это моё хобби. Данный сайт можно назвать сайтом для своих. Если у вас есть идеи о том, как сделать данный проект более серьезным и более полезным вы можете написать мне.